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Abstract. We report on the generation of single-photon pulses from a single InAs/InP 
quantum dot in telecommunication bands (1.3-1.55 m: higher transmittance through 
an optical fiber). First we prepared InAs quantum dots on InP (0 0 1) substrates in a 
low-pressure MOCVD by using a so-called InP ‘double-cap’ procedure.  The quantum 
dots have well-controlled photo emission wavelength in the telecommunication bands. 
We also developed a single-photon emitter in which quantum dots were embedded. 
Numerical simulation designed the emitter to realize efficient injection of the emitted 
photons into a single-mode optical fiber. Using a Hanbury-Brown and Twiss 
technique has proved that the photons through the fiber were single photons.  

1.  Introduction 
Single-photon generator (SPG) attracts much attention for not only improving the performance of 

fiber-based quantum key distribution, but also quantum computing in future [1,2]. A nano-scale 
confinement of electrons and holes gives atomic-like quantized energy levels so that the Pauli’s 
exclusive law prohibits the creation of the same electron–hole pair state. An optical structure, which 
has the nano-scale confinement, can provide an exclusive recombination process for each pulsed 
excitation. The optical structure is called a single-photon emitter (SPE). The SPEs have been studied 
by using various systems: single molecules [3], single nitrogen vacancy centers in diamond [4], 
impurity centers in semiconductors [5], and single quantum dots (QDs) [6–12]. Self-assembled single 
QDs offer advantages of a sharp luminescence line, optical stability, and controllability of wavelength. 
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 In current optical telecommunications operating via single-mode fibers (SMFs), the wavelength 
range from 1.3 to 1.55 m is a window of telecommunication network. For convenience, this range is 
divided into four bands: the O-band (1260–1360 nm), E-band (1360– 1460 nm), S-band (1460–1530 
nm), and C-band (1530– 1565 nm). The C-band is especially important from a viewpoint of long-
distance transmission, because it has the highest transmittance in all optical fiber bands. However, it is 
difficult to develop QDs for telecommunication purposes, and most single QD studies have used 
below 1 m. The single photon emitters previously demonstrated are almost in this wavelength range. 
We are developing SPEs in telecommunication bands [13,14]. The development mainly has two 
difficulties. One is to obtain high-quality QDs, and the other is to inject single-photon pulses (SPP) 
into a SMF. 

2.  Experiments 
Figure 1 shows a SPG setup that consists of a single photon emitter (SPE), an excitation pulse laser 

and a tunable band pass filter (BPF). The pulse laser controls generation timing of single photon 
pulses (SPP), and the BPF purifies SPP emitted from the SPE. The SPE obviously plays an important 
role in generating SPP. 

A practical quantum network through optical fibers requires a SPE at telecommunication 
wavelength. Then we grew self-assembled InAs QDs on InP (0 0 1) [15] with the use of the double-
cap method [16,17] in an MOCVD. We can tune the growth of InAs/InP QDs to telecom wavelength 
range, and we set the thickness of the first cap layer over QDs at 1 nm to obtain well-isolated QDs at 
1.55 m. By using the QDs, we fabricated a small mesa structure as shown in figure 2(a). The QDs as 
shown in figure 2(b) are embedded at 300 nm below the top of the mesa. In order to achieve high 
optical efficiency, the structure with a tapered rectangular column shape was designed by a finite-
difference-time-domain (FDTD) simulator. Figure 3 shows column’s diameter dependence of photon 
extraction efficiency from a QD to an upward space in which numerical aperture 0.55 is matched to 
the objective lens in figure 1. From FDTD simulation, we estimated that extraction efficiency of the 
SPE is about 6%.  

Figure 1. Schematic view of a single photon generator setup. 
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3.  Results and Discussion 
Figure 4(a) shows resolution-limited sharp exciton line from a single QD at 1.546 m at 10 K. The 

tunable BPF could select the exciton line from the luminescent spectrum. To confirm the non-classical 
photon emission, we used a Hanbury-Brown and Twiss setup which includes single-photon detection 
modules (id 200, id Quantique). These modules were Peltier-cooled InGaAs avalanche photodiodes 
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(APDs) operated in the gated mode. The gate time and the dead time of the APDs were set to 5 ns and 10 
s, respectively; these values have been found to efficiently suppress dark counts and after pulses of the 

detectors. The gate timing of photon detection was well synchronized to the excitation pulse with 2MHz 
repetition rate (corresponding to the time period of 0.5 s). The photon pulses were split by a 50:50 fiber 
coupler with each arm connected to the detection modules. The start and stop signals from the two APDs were 
input into a time-correlated single-photon counting board (TimeHarp 200, PicoQuant). Then we obtained the 

second-order correlation function g
(2)

 for the exciton emission. (see figure 4(b)) The correlation function 
clearly shows an anti-bunching property of generated SPP.   

4.  Summary 

We developed SPE, and we studied generating SPP in the C-band from a single InAs/InP QD through an 
SMF. The SPP at 1.546 m was realized by optimizing the growth conditions and the optical structure. Then 
we proved the SPP emission by photon correlation measurements. The results confirm that the QDs can be 
applied to the SPP emitter at telecommunication wavelengths. We are now improving the SPE and a whole 
system with a cryostat to realize practical quantum telecommunication.  

Figure 2(a).  SEM image of a single photon emitter.  (b) InAs/InP QDs were embedded in a mesa structure of 
the single photon emitter. 
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Figure 4. (a) PL spectrum from the single photon emitter. (b) Photon
correlation function of filtered spectrum at 1.546 m. 
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